www.mbsm.pro, cOMPRESsOR A/A , R22 ,124MBTU, 220V/380v, 3HP, H25G124DBDE, BRISTOL

www.mbsm.pro, cOMPRESsOR A/A ,124MBTU, 220V/380v, 3HP, H25G124DBDE, BRISTOL

1 RT  (Ton) = 12000 BTU/hr

124M BTU/hr = 10 Ton

 




www.mbsm.pro, Branchement de Contacteur ,De Réponse Carte mère, Climatiseur ,Sharp

www.mbsm.pro, Branchement de Contacteur ,De Réponse Carte mère, Climatiseur ,Sharp

A1 = Entrée Courant de réponse carte mère Neutre (N) Noir 1.5mm2

A2 = Entrée Courant de réponse carte mère Phase (1) Rouge 2.5mm2

A1/a2 = C’est la Bobine 220v 50H

L1 /L3 = Entrée Courant de La Ligne De Curant  Direct Phase Rouge 2.5mm2

T1/T3 = Retour Du Compresseur Fil Rouge 2.5mm2




www.mbsm.pro , compressor, R134a ,ff16hak ,170 watt ,1/4 HP ,1PH

www.mbsm.pro , compressor, R134a ,ff16hak ,170 watt ,1/4 HP ,1PH




www.mbsm.pro , Powerful Ferrite Core ,noyau de ferrite ,Magnetic Core

Le noyau de ferrite est utilisé pour réduire les interférences électromagnétiques dans les câbles électriques ou de signaux produits par le courant électrique.

Un noyau de ferrite agit comme un filtre ou réactance inductive, pour fournir une résistance au passage de courants alternatifs de haute fréquence qui peuvent provoquer des interférences dans les périphériques et appareils électroniques.

Son installation est importante afin d’éviter tout dysfonctionnement sur un périphérique.

Comment installer un noyau de ferrite

Il est recommandé de placer le noyau de ferrite comme indiqué dans l’image:

  • Environ 10 à 12 cm de l’extrémité du câble, au plus proche de la prise de courant ou de la source du signal si le câble est de type vidéo, audio ou de données.
  • Connectez le noyau de ferrite sur le câble pour que le câble le traverse d’une extrémité à l’autre. Avec certains modèles, vous pouvez faire plusieurs tours.
  • Refermez le cache de protection.




Mbsm.pro , principe de fonctionnement d’un transistor

images.png (4 KB)

images.png (10 KB)

images.png (10 KB)

images.png (10 KB)

 

Description du transistor

Le transistor est un composant d’où sortent 3 fils électriques. Ils sont dénommés B (base), C (collecteur), et E (émetteur).

Voici un dessin du transistor BC 547, agrandi quatre fois :

transistor
Un tel transistor coûte de l’ordre de 10 FB dans les magasins de composants électronique.

Voici la représentation classique du transistor dans les schémas électroniques :

transistor

Le principe de fonctionnement

  • Si on branche une source de tension entre les bornes C et E, le transistor ne laisse pas passer de courant (fig. 1).
  • Par contre, entre B et E il y a un court-circuit. Si on veut faire passer un courant précis entre B et E, il faut utiliser une source de tension et une résistance (fig. 2).
  • Si on envoie un courant de IB ampères entre B et E, alors le transistor acceptera de laisser passer un courant de IC = ß . IBampères entre C et E (fig. 3). Dans ce cas ci, ß vaut de l’ordre de 100.

 

circuit electronique
Les schémas électroniques correspondants aux dessins des figures 1, 2 et 3 sont représentés par les figures 4, 5 et 6 :

circuit electronique
Note : Pour ceux qui voudraient essayer ces branchements : une seule pile de 9 Volts peut jouer le rôle des deux piles (fig. 7 et 8) :

circuit electronique
Faites attention à la polarité : mettez bien le pôle positif et le pôle négatif de la pile au bon endroit. Le sens du courant est important pour un transistor.

Le BC 547 est un transistor un peu faible pour allumer une lampe. Vous aurez peut-être intérêt à utiliser un transistor plus puissant, comme par exemple le BD 649. En voici un dessin, agrandi deux fois :

transistor
Au début, en faisant des erreurs de branchement ou en faisant dissiper une énergie trop importante au transistor, vous risquez fort d’en brûler quelques uns. C’est normal.

La raison pour laquelle on soustrait systématiquement 0,7 Volts de la tension UBE est que les transistors bipolaires actuels contiennent une diode “parasite”. La tension soustraite dépend du type de semiconducteur utilisé : 0,7 Volts pour le silicium, et 0,2 Volts pour le germanium.